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AbStract. Interfacial fluctuations in complete wetting films give rise to imponant cnrrections 
to the macroscopic Kelvin equation far the location of the shifted first-order (condensation) 
transition that occurs when a fluid (or an k ing  magnet) is confined between two parallel 
adsorbing walls. T h e  wall separation L that enters the usual Kelvin equation must be 
replaced by L- +l(p*) ,  where I is the thickness of the wetting film at the chemical potential 
p* at which capillary condensation occurs and $ is an amplitude. For pure systems with 
shon-ranged forces thermal wandering is insufficient to renormalire the simple geometric 
result + = 2 far bulk dimensions d 2 3. However, in d = 2, where fluctuations are much 
stronger, we predict 4 = 3 throughout the weak fluctuation regime of complete wetting 
which includes long-ranged dispersion forces as well as shon-ranged forcer. Our prediction 
is supported by an explicit analysis of a d = 2  interfacial Hamiltonian. This shows that 
pseudo-phase coexistence, characterized by an exponentially large transverse correlation 
length, occurs for an exponentially narrow range of p* determined by the corrected Kelvin 
equation with + = 3. We also speculate that interfacial wandering in quenched random 
media should lead to equivalent corrections to the Kelvin result, but with amplitude 
+ = ( Z - [ ) / ( l - L ) ,  where [ is the interface wandering exponent, in the fluctuation 
dominated regime. 

1. Introduction 

When studying the effects of confinement or finite-size on the phase equilibria of a 
fluid, or an Ising magnet, two fundamental questions are (i) what is the extent and 
character ofthe shift of any phase transition (relative to the values of the thermodynamic 
fields which locate the transition in bulk)? and (ii) what is the extent of the rounding 
of the transition? Phenomenological finite-size scaling theory, reviewed in [ 1-41, 
answers these questions successfully for critical transitions and makes a number of 
predictions for universal critical amplitudes associated with (fluctuation-dominated) 
finite-size effects [ 5 ] .  Ideas of conformal invariance have been especially useful in 
understanding this universality [ 6 ] .  The subject of finite-scaling for first-order phase 
transitions is somewhat less extensive [7] and theorists have usually focused on the 
determination of the length scales which control the rounding of the transition in 
confining geometries that suppress true symmetry breaking and phase coexistence 
[7-121. Such work is complemented by a large (mainly physical chemistry) literature 
concerned with the shift of the bulk liquid-gas (condensation) transition when a fluid 
is confined in parallel plate (slit) or cylindrical geometries. If the confining substrates 
(walls) favour liquid, capillary condensation occurs at bulk gas pressures p that lie 
below the bulk saturated gas pressure p8*,( T) for the given temperature T This 
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phenomenon is important in experimental investigations of the adsorption of gases on 
mesoporous solids and theoretical treatments can be traced back to Zsigmondy [13], 
who invoked the macroscopic Kelvin 1141 equation for the change in vapour pressure 
due to a curved meniscus, to interpret adsorption data. In recent years many detailed 
mean-field density functional theories and computer simulations have been performed 
to determine the location and nature of phase transitions of simple fluids confined in 
model pores; for a brief review see [15]. Such studies have shown that the simple 
(Kelvin) prediction for the shift in chemical potential 

(1) 
at which two-phase coexistence occurs in finite geometry remains accurate for wall 
separations L (or cylinder radii R,) as small as 10 molecular diameters-provided the 
walls are only partially wet by liquid, i.e. the contact angle 0 > 0. Note that ulg is the 
surface tension of the planar liquid-gas interface. When 0 = 0, so that complete wetting 
occurs, the presence of thick adsorbed (wetting) films can lead to important corrections 
to the Kelvin equation (1). These were described first in a pioneering paper of Derjaguin 
[16] but they have been re-derived using density functional theory [17,18] and have 
been sought for in Monte Carlo simulations of a lattice gas model 1191. Such corrections 
were obtained at the mean-field level, i.e. there was no attempt to incorporate fluctuation 
contributions. 

In the present paper we reconsider the shift of the liquid-gas (spin up-spin down) 
coexistence curve for a fluid (king magnet) confined in slit-geometry concentrating 
on the case where the identical adsorbing walls are completely wet by liquid (spin 
up), say, when the bulk phase is a gas (spin down) at p = p;, and L = 00. We argue 
that the location of the shifted bulk transition is given, for large L, by (1) with 0 = 0 
and the wall separation L replaced by L - +I,  where I is the thickness of a wetting film 
and @ is an amplitude which, in general, depends on the nature of wall-fluid and 
fluid-fluid forces as well as the interfacial wandering of the thick wetting films adsorbed 
at the walls. In bulk dimension d = 2, within the weak fluctuation regime of complete 
wetting, which incorporates long-ranged dispersion forces as well as short-ranged 
forces, we predict that C$ takes the universal value 3. We compare this result with the 
corresponding predictions for d = 3 where mean-field treatments should remain valid 
and 4 should be dependent on the range of the wall-fluid and fluid-fluid forces 
116-181. The results of an explicit calculation, based on an effective interfacial Hamil- 
tonian, confirm our prediction ford  = 2. Finally we speculate that equivalent corrections 
to the Kelvin equation should apply for quenched random media. Since the amplitude 
C$ is directly related to the interface wandering exponent C we contrast the values of 
+ obtained from thermal wandering in a pure fluid with those from interfacial wander- 
ing in systems with random bonds or with random fields. 

A 0 Parry and R Evans 

W* - L, = - 2 0 , ~  cos e /  U P ,  - P A  L+CO 

2. Heuristic treatments 

We begin by recalling the derivation of (1); further details may be found in 117,181. 
For ! ~ r g p  wa!! oeparz!iono L !he confined fluid wi!! exhibit true phase coexistence (at 
a fixed temperature below the shifted bulk critical temperature Tc,L) along a line of 
points in (p ,  L) space-provided the bulk dimension d 2 3 .  Here fi is the chemical 
potential of the (bulk) reservoir. For d =2 ,  below a pseudo-critical temperature, we 
expect to find pseudo-phase coexistence in the confined fluid (or near spontaneous 
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symmetry breaking for an king strip) characterized by an exponentially large transverse 
correlation length tl1 - L1’2 exp L [9 ,20 ,21 ]  which measures the distance between 
domain walls. Each domain will be described by a liquid-like or gas-like density profile. 
Pseudo-coexistence should be restricted to a very narrow range of values of p, i.e. the 
rounding of the transition is expected to be exponentially small - k B T / ( p , - p a ) t l l L -  
L-”’ exp(-L) [9 ,21 ] .  It is the location p*-pL,., of this rounded transition we shall 
be concerned with here. Consider first the case where the contact angle (defined, as 
usual, for a single wall and p = p..,) satisfies O <  0 < 7r/2 so that the identical walls 
exert surface fields which favour liquid but are not completely wet. Phase coexistence 
or pseudo-coexistence will then occur on the ‘gas side’ of bulk coexistence, i.e. at 
p < pSa(T) .  For large L we can view the coexisting phases in the slit as a dilute ‘gas’ 
(8) at a pressure p ( p ,  T )  that is fixed by the reservoir and a condensed ‘liquid’ (I)  at 
a pressure p t  that is equal to that of a metastable bulk liquid at the given (p ,  T )  

two phases can be approximated by 
;;7, ;aj. p,en the topa: gran: poieniia: per unit area, ur unit iengih in d = 2, of the 

4=- pL+2uw,, ( 2 0 )  A 

and 

where owup and uw, refer to the single wall ( L =  m) wall-gas and wall-liquid interfacial 
tensions, respectively. Implicit in this treatment is the assumption that the density 
profiles of the two phases are almost constant throughout the volume of the slit: 

gas and liquid. Coexistence for the confined fluid occurs when Q,=n1 or when 
p - p r  = 2(uw8 - uwJ/ L, the Laplace pressure difference across the cylindrical meniscus 
in the slit [ 15, 17,181. The use of Young’s equation uw8 = gwl+ ulle cos B and the relation 
( ~ p / d p ) ,  = p then yields (I). Clearly (1) is valid provided T c  T,,,, the capillary critical 
temperature, so that any effects of shifted bulk criticality can be neglected. Does this 
approximation incorporate properly the effects of adsorption in the confined system? 
Formally we have, at  fixed T, 

a(?)  = p s  and p ( ; )  = PI, whc:e ps and p, a;c the iiumber deiisiiies of:hi bii:k coexistkg 

where ug(L,p) is the surface excess grand potential per unit area, along with the 
corresponding equation for Cl,. The total adsorption r = -(Ju+/Jp)L,T. Equations (2) 
make the simplest possible (zeroth order) approximations for U& p )  and u,(L,  p).  
We now consider possible improvements. 

Suppose first that 0 >  0 (partial wetting) so that in the limit L + m  and p+ p;, the 
thickness of an adsorbed film I approaches a finite value Im(pSat). It is convenient to 
define the film thickness from the adsorption via 

where pb is the bulk gas density for given (p,  T )  and the fluid density profile p(  r )  = p ( z )  
is assumed to vary only in the direction normal to the walls. Under these circumstances 
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we can make the following approximation 
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U& F * )  = ug(m, P * )  

which ignores any effects of confinement ( L  dependence) in the excess grand potential 
but does incorporate p dependence. For strongly adsorbing walls Tg and, hence lm(psat), 
can be large but necessarily remain finite. This would be the case for a fluid that 
undergoes a continuous (critical) wetting transition at some temperature Tw [22]. For 
T S  T,, lm(psa,) will then be substantial. By contrast we expect the adsorption on the 
'liquid' branch r, to be rather small so that we neglect the corresponding correction 
term and set U,(L,F*)=ZU~, ,  as in ( 2 6 ) .  With these assumptions coexistence now 
occurs for 

The term L-21m(pLI.,) which replaces L in the denominator of the Kelvin equation 
has an appealing geometrical interpretation: A(L-21,) is the effective volume for 'gas' 
in the presence of thick adsorbed films. Note that ( 5 )  should remain valid, with the 
same coefficient of I,, for any form of fluid-fluid and wall-fluid forces and all 
dimensionalities d, provided the walls are partially wet. Any corrections to ( 5 )  that 
arise from including explicit finite-size effects in ug(L,  p )  should be of higher order 
in (I,/L). It follows that if we define an amplitude 4 via the general expansion 

then Q takes the trivial geometric value Q""" = 2 for any partial wetting situation 
0 > 0. In this case the film thickness at coexistence in the confined system l ( p * )  = Im(p..J 
(is finite) in the limit L+m. 

The situation of complete wetting 0 = 0 is much more subtle and interesting. As is 
implied by (6) we expect such an expansion to remain valid but now Im(p..,) = m  so 
that the argument leading to ( 5 )  and the result Q = 2 is no longer applicable. Recall 
that for complete wetting and L = m  the wetting film thickens as I&)- (paat-w)-'?. 
The critical exponent pf" depends on the form of the fluid-fluid and wall-fluid forces 
as well as the dimensionality d [22:23]. In d = 3  p:" is non-universal: P:"=O(ln)  for 
short-ranged forces whilst p:" = 1/ m for wall-fluid and fluid-Ruid potentials that decay 
as - z - ~  ( m  = 3 for non-retarded dispersion forces). These are mean-field exponents 
but incorporating fluctuations does not alter them. The upper critical dimension for 
complete wetting with long-ranged forces is d:" = 3 -4/( m + I )  [23,24]. For short- 
ranged forces d:" = 3 but the fluctuations alter only the amplitude of l ,  [22,23]. This 
suggests that mean-field treatments of corrections to the Kelvin equation for capillary 
condensation should remain valid in d = 3. Let us recall then the classic Derjaguin 
derivation [16, 17,2511. 

t [XI  extends Derjaguin's earlier work [I61 and discusses the form ofthe disjoining pressure when dispersion 
and other forces operate. 
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For thick wetting films of thickness I at each wall the excess grand potential is 
conveniently expressed as 

U&L, p )  = 2Uw,-2ptI+2pI+g(L, I )  (7) 

where g(L,  p )  is an excess free energy per unit area, defined via (7), and I = l ( p ) .  The 
equilibrium film thickness lo is given by minimizing with respect to 1 at fixed (p ,  T ) ,  
i.e. 

(8) 

where II(L, I )  is the disjoining pressure [25]. Similarly the Gibbs adsorption equation 
implies that at equilibrium rg 2(p, -pg)Io. What is required is a suitable approximation 
for g(L, I )  or, equivalently, for the disjoining pressure. The simplest approximation 
[ X j  sets g j i ,  i j  = i g j m ,  ij, which impiies finite-size effects can be negiected again. For 
dispersion forces in d = 3 it is well known that g(m, I )  = AI-2/2 where A is a positive 
constant. Substituting this form into (8) yields 

l J  P - P  7- - - 2  _ _  J IdL, I ) l ,o=n(L, Io)  

P -ptz  ( P ~ ~ ~ - P ) ( P ~ - P J  = Aii3 (9) 

rusing this approximation for the cnnfined 'gas' 2nd setting q(L, p) =2cwi, IS pre- 

P - P * =  ( 2 ( ~ w , - ~ , , ) + ~ g ( m ,  i ( p L * ) ) ) / ( L - 2 W ) )  (10) 

p -pt  = ZU,,/( L - 3I(p*)). 

which is the standard growth law (p:" =:) for a complete wetting film at a single wall. 

viously, we find coexistence when 

or when 

(11) 

Thus, for dispersion forces the amplitude in (6) is 6 = 3. More generally, ifthe wall-fluid 
and fluid-fluid potential vary as -Cm, 50 that g(m, I) = AI-(*-'), we find the 
denominator in (11) becomes L-(2+2(m-I)- ' )I(pL*) and 

+MF=2+2/(m - 1) long-ranged forces. (12) 

The equivalent approximation for short-ranged forces is g( L, I )  = 2g(m, I )  = 

(13) 

A ~ ~ - ~ - ~ l \  ... h:-h ..;-,A- T I L  1 7 1  I1c"y, -~" ' ,  nlllrll J1C1"J L'", L,, 

p -p t  = 2uIg/(L-2/(p*) - 2 A - I ) .  

Since A-'  is a constant (microscopic) length (13) implies 

short-ranged forces. (14) 

Another result which emerges from the mean-field treatment is that wetting films are 
slightlythicker. foragivenundersaturation, inslits then at asingle wal1,i.e. I (p )  > I&). 
This observation follows from including terms of the form -A(L-I) - ("- ' )  in g(L ,  I) 
[17,18,25]. It does not affect the validity of (12) and (14), however. We conclude that 
in a complete wetting situation the simple geometrical result for the amplitude, 4 = 2, 
is only obeyed for short-ranged forces when d 

We return now to d = 2 where interfacial fluctuations in the wetting films are much 
stronger and we might expect significant fluctuation corrections to emerge. Now 
d (  =2) < d:" for both short-ranged forces and dispersion forces; recall m = 4  for the 
latter in two dimensions, implying d:" = y. The complete wetting exponent takes the 
universal value p?=f provided m > 3  so that fluctuations dominate [23,24]. It is 

+MP=2 

3. 
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possible to understand these results from a phenomenological viewpoint [26] by 
considering an excess free-energy (for a single wall) 

g(m, I) = AI-'"-"+ B/-' (15) 

where an effective repulsive interaction, that accounts for the entropy of the unbinding 
interface, has been added to the leading long-ranged potential energy term. The 
interaction exponent for thermal wandering is T = 2(d - 1)/(3 - d ) ,  which is 2 for d = 2. 
If this second (entropic) term dominates one finds, from minimization of gg(m, b) ,  
that IO-(psa,-p)-"('"', i.e. P:"=f in d =2.  This procedure serves to define the weak 
fluctuation regime (WFR) for complete wetting [26]; the critical behaviour is obtained 
in mean-field fashion but with the entropic term replacing the direct interaction and 
determining the exponents when 7 < m - 1. 

A 0 Parry and R Evans 

For the confined fluid the corresponding expansion is 

g(  L, I )  = A[ I - ( " - " -  ( L -  I ) - ' " ~ " ] +  B [ / - ' - ( L -  I ) " ] + .  . . (16) 

and it is assumed that there are no 'interference' effects associated with the entropy 
of the two unbinding interfaces. The derivation proceeds as previously and one finds, 
for T <  m - 1 where fluctuations dominate, capillary coexistence with an amplitude 

4 = 2 + 2 / 7  W F R  (17) 

i.e. + takes the universal value 3 in d = 2. Note that this argument assumes any 
fluctuation contributions in the 'liquid' phase are irrelevant since thick 'drying' films 
do not develop. 

3. Explicit results in d = 2 

Ideally we would like to compare the prediction (6) (with 4 = 3) with exact results 
for, say, an infinitely long Ising strip with identical contact fields h,  acting at both 
edges. Such results do not exist. Monte Carlo simulations for M x L  lattices, with 
M >> L and periodic boundary conditions along the strip, have been performed [27]. 
Very sharp transitions (the rounding was not ascertained) were observed at hulk 
magnetic fields H *  that are shifted from the value H = 0 ofthe bulk first-order transition. 
The zeroth-order (Kelvin) prediction H*- L-' is reasonably well verified and an 
attempt was made to ascertain the leading-order correction in the completely wet 
regime. Albano et a/ [27] used scaling arguments to suggest this correction should be 
proportional to L-"' and their simulation data do give some support to this result. 
Our present treatment differs from that in [27] (those authors do not discuss the 
amplitude 4 )  but it does predict the same L-"' correction. This follows from (6) 
noting that I(p*)  - (p..,-p*)-113 - L'I3 in d = 2. In the absence of explicit results for 
the Ising strip we turn to a simpler, interfacial Hamiltonian which does admit an exact 
solution for pseudo-phase coexistence in d = 2. 

It is convenient to consider first a model where the confined 'gas' phase exhibits 
a single liquid-gas interface. We suppose the surface fields h ,  and h2 are such that 
wall 1 at z = 0 is completely wet by liquid (0 ,  = 0 for L = m and p = p:,) while the 
second is partially wet. Furthermore we suppose that the second wall, at z = L, is not 
completely dry, i.e. the appropriate contact angle satisfies n > O2 > 0. The temperature 
T must lie below any (critical) drying temperature TD of the second wall. Such a 'gas' 
phase will exhibit a thick liquid film with interface near the first wall and should exhibit 
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pseudo-coexistence with a ‘liquid’ whose density profile is almost constant except near 
the second wall where a thin gas film can develop. The important microscopic configur- 
ations of such a system should be those associated with the confinement of the 
fluctuating interface. Consequently we would hope to capture the essential physics by 
employing a continuum capillary-wave-Hamiltonian, e.g. [22-241 

where l ( x )  denotes the distance of the liquid-gas interface from the wall at I = 0 and 
x is measured along the wall. The binding potential is chosen to be U,(L; I )  = 
HI+ U J L ;  I ) ,  with bulk field H = ( p S a t - p ) ( p , - p g )  and 

I < O  

I >  L. 

The well depth E and width R must be chosen so that e >  ~ ? ( k . T ) ~ / 8 R ~ u , ,  [28] to 
ensure T <  TD. Pseudo-phase coexistence does occur in this model for certain values 
of (H, L )  and the coexisting phases do have the form described above. 

We would expect the Hamiltonian (18) to account for corrections to the Kelvin 
equation arising from interfacial fluctuations occurring in the ’gas’ phase; again we 
suppose there are no fluctuations in the ‘liquid‘ phase. Moreover, the potential (19) 
should suffice to describe long-ranged wall-fluid and fluid-fluid forces throughout the 
WFR since the complete wetting transition is determined by the entropic repulsion I-’ 
rather than ‘direct’ interactions between the unbinding surfaces; long-ranged operators 
of the form I - ( m - ’ )  ( m  > 3 )  that might augment (19) would be irrelevant in a renormaliz- 
ation group sense [26]. Obtaining the solution of the Hamiltonian (18) is straightforward 
using transfer matrix techniques of the type described in [24]. One finds that for 
T < To, pseudo-phase coexistence, characterized by an exponentially large correlation 
length 

- (k) exp( cL/ R )  
R 

occurs in the limit L + m  for bulk fields that are exponentially close, O ( R / & ) ,  to 

where the amplitudes c - ( T , -  T )  and A are non-universal. The coefficient $ in the 
denominator is universal (throughout the WFR) and is different from the geometrical 
value of unity-we have a single complete wetting film in this case. The simplest 
extension of the Kelvin equation to this asymmetrically confined fluid would replace 
Z U , ~  cos 0 in (1) by U , ~ ( C O S  Ol+cos 0d.  But we have chosen the binding potential in 

wheretheexponent a,=Oforcritical wetting(ordrying)in d =2[22,23].Thecalculated 
amplitude A- ( TD- T)’ does vanish with the exponent that is suggested by this 
argument. I t  is important to recognize that any value of H *  that does not satisfy (21), 
i.e. that does not incorporate the proper correction term, does not yield an exponentially 
large correlation length; the rounding of the transition is exponentially small as 
expected. 

(18) SO that B , = O  and !3*<n. As T - T ; ,  so that B2+’ir ,  C O ~ B ~ + ~ - ( T , , - T ) ~ - ~ ~ ,  
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We return now to the original case of identical walls where both contact angles 
8 = 0. Fluctuations now occur in wetting films on both sides of the slit. Given that 
these films have a thickness I ( , u * )  - Lli3 at pseudo-phase coexistence we expect no 
significant entropic interference effects between the two films in the 'gas' phase and it 
should be valid to replace I&*) by I(p*) in the limit of large L. It fallows that 
although we do not have an explicit solution for a model with identical walls, we 
expect to recover the modified Kelvin equation (6) with 4 = 3 in d = 2.  The result from 

emphasize once again that the corrections to the zeroth-order Kelvin equation, as 
described by the amplitude 4, must be retained in order to obtain an exponentially 
large tII. These corrections contain crucial information about fluctuations which must 
be included for a self-consistent determination of fi*(L, T). 

the q m q y w a v e  Hami!!onlan !en& strong Wpp"fi our e.r!ier prediaion. We 

4. Corrections for interfacial wandering in random media 

So far we have considered pure fluids where the interfacial fluctuations are those 
associated solely with thermal wandering. There is a substantial literature concerning 
interfaces in impure systems or, more precisely, in quenched random media [ 2 9 ]  where 
an interfacial Hamiltonian such as (18), or its generalization to higher dimension, now 
includes a random potentiai &(i, x j  acting on the interface and where the fluctuations 
of U, are usually correlated to correspond to random fields or random bonds. Complete 
(and critical) wetting at a single wall has been discussed [ 2 9 , 3 0 ]  for both types of 
randomness in terms of the excess free energy ( 1 5 ) .  The contribution from interfacial 
wandering is still written as BI-' but the interaction exponent T no longer takes the 
value for thermal wandering, rather it is given by [ 2 9 , 3 0 ]  

T =  2(1 - l ) / c  ( 2 2 )  

where 5 is the interface wandering or roughness exponent defined generally via the 
relation cL-cf, which expresses the extent of the perpendicular excursions of the 
interface (roughness) tr, in terms of a characteristic transverse (correlation) length 
tI1. For thermal wandering standard capillary-wave analysis yields the familar result 
& ( d )  = ( 3  - d ) ! 2  for 1 < d S 3:  whereas for random-fields heuristic arguments [ 2 9 ]  
yield b n F ( d )  = (5 - d ) / 3  for 2 s  d s 5 .  For random bonds Fisher [ 2 9 ]  quotes l R B ( 2 )  = 3 
and & ( 3 )  ~0.4, with l n s ( d )  = 0 for d 3 5. By comparing the corresponding values of 
T,  obtained from ( 2 2 ) ,  with the long-ranged force exponent m - 1  entering (15), one 
can determine whether or not long-ranged forces are relevant for complete wetting in 
random media [ 2 9 , 3 0 ] .  

We can extend this strategy to capillary condensation by adopting the same 
procedure we employed for thermal wandering, i.e. we employ (16) and neglect 
'interference' effects. Clearly for T <  m -  1 we recover the modified Kelvin equation 
(6) with the amplitude 4 given by 

In table 1 we summarize our results for this ratio in the case of short-ranged forces. 
Random fields give rise to the largest correction to the geometrical result $""" = 2 
since T R p ( d )  < T.~( d )  < T , ~ (  d )  for 2 s d c 5 .  In d = 2 random fields destroy the interface 
and, hence, the gas-liquid transition. Incorporating long-ranged dispersion forces will 
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Table 1. The amplitude + that determines corrections to the Kelvin equation: short-ranged 
forces. 

Bulk dimension d = 2  d = 3  d = 4  d = S  

Pure system 3t  2 2 2 
Random fields - 4 2 
Random bonds 4 -2 .v  -2.2$ 2 

t In d = 2 pseudo-phase coexistence occurs for the confined pure fluid whereas for higher 
dimensions true coexistence should occur. 
'k These values are based on estimates o f  i given in [29]. 

not affect the values of 4 in d = 2. However, in d = 3 dispersion forces will give rise 
to non-universal mean-field values of C$ for pure systems and random bonds; only for 
random fields will the value C$ = 4  remain insensitive to the presence or absence of 
long-ranged forces. 

5. Concluding remarks 

_._ In !his pqpr  we have arg.ed that ifiterfa&! fl.ct.ations in Gomp!& w&ng films 
lead to corrections to the macroscopic Kelvin equation for capillary condensation in 
slits that are of a similar type to those derived originally by Derjaguin [16] in his 
mean-field treatment of long-ranged wall-fluid and fluid-fluid forces. The effective slit 
width for 'gas' is L -  &l(p*)  where the amplitude 4 is given by 

for pure systems with short-ranged forces. In d = 2 thermal wandering is predicted to 
give rise t o  the result C$ = 3 throughout the WFR, i.e. even in the presence of dispersion 
forces, and this is supported by explicit analysis of a capillary-wave Hamiltonian. That 
analysis also points out the necessity of retaining the corrected width L-31(@*) if one 
is to obtain the exponentially large transverse correlation length which defines the 
pseudo-phase coexistence in d = 2. interfaciai wandering in random media snouid iead 
to more pronounced corrections; 4 is calculated to be larger. In particular, random 
fields in d = 3 should yield the universal value 4 = 4. 

Some of our predictions should, in principle, be amenable to test via Monte Carlo 
simulation for king lattices. Previous work [ 191 for a three-dimensional system with 
a wall-particle potential showed that the Derjaguin correction, 4 = 3,  did yield 
a value of p* closer to simulation than did the geometric correction C$B'"" = 2, but the 
wetting films were still rather thin. In order to ascertain corrections due to interfacial 
fluctuations large lattices in d = 2 would appear to offer the best possibility. Extension 
or re-analysis of the simulations of Albano et a/ [27] might be profitable. Complications 
of finite transverse length M plus the need to have L sufficiently large to observe thick 
films might prove prohibitive, however. 
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